4.7 Editorial Material

Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury

期刊

EXPERIMENTAL NEUROLOGY
卷 214, 期 1, 页码 6-9

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2008.07.016

关键词

-

向作者/读者索取更多资源

Research focused on improving recovery of function, including the reduction of central neuropathic pain (CNP) after spinal cord injury (SCI) is essential. After SCI, regional neuropathic pain syndromes above, at and below the level or spinal injury develop and are thought to have different mechanisms, but may share common dysfunctional glial mechanisms. Detloff et al., [Detloff, M.R., Fisher, L.C., McGaughy, V., Longbrake, E. F., Popovich. P.G., Basso, D.M., Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp. Neurol. (2008), doi: 10.1016/j.expneurol.2008.04.009.] describe events in the lumbar region of the spinal cord after a midthoracic SCI injury, the so called below-level pain and compares the findings to peripheral nerve lesion findings. This commentary briefly reviews glial,11 contributions and intracellular signaling mechanisms, both neuronal and glial, that provide the Substrate for CNP after SCI, including the persistent glial production of factors that can maintain sensitization of dorsal horn neurons in segments remote from the spinal injury; ie. dorsal horn hyperexcitability to formerly non noxious stimuli that become noxious after SCI resulting in allodynia. The term gliopathy is proposed to describe the dysfunctional and maladaptive response of glial cells, specifically astrocytes and microglia, to neural injury that is initiated by the sudden injury induced increase in extracellular concentrations of glutamate and concomitant production of several proinflammatory molecules. It is important to understand the roles that different glia play in gliopathy, a condition that appears to persist after SCI Furthermore, targeted treatment of gliopathy will attenuate mechanical allodynia in both central and peripheral neuropathic pain syndromes. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据