4.2 Article

Stem cells of GATA1-related leukemia undergo pernicious changes after 5-fluorouracil treatment

期刊

EXPERIMENTAL HEMATOLOGY
卷 37, 期 4, 页码 435-445

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.exphem.2008.12.004

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology
  2. Japan Science and Technology Corporation-ERATO Environmental Response Project
  3. Grants-in-Aid for Scientific Research [21390288] Funding Source: KAKEN

向作者/读者索取更多资源

Objective. Transcription factor GATA1 plays a critical role in erythropoiesis through the integrated regulation of cell proliferation, differentiation, and apoptosis. In Gata1.05 gene knockdown mice, Gata1 expression deteriorates to 5% of wild-type allelic expression, a level insufficient for supporting normal erythropoiesis and one that leads to accumulation of erythroid progenitors that are readily transformed into erythroblastic leukemia. Serial engraftment of leukemic cells into primary or subsequent nude mice reconstituted complete leukemic phenotype in recipient. To delineate characteristics of leukemic stem cells (LSCs), we analyzed LSCs of Gata1.05 leukemia, which have a potential to reestablish leukemia in mice. Materials and Methods. Leukemic cells isolated from the first recipient mice of Gata1.05 leukemia cells were divided into two fractions using Hoechst dye. Fractionated cells were transplanted into second recipient, or analyzed gene expression profiles and cell-cycle status. Consequences of 5-fluorouracil (5-FU) treatment on leukemic cells in vivo were studied. Results. LSCs were enriched in the Hoechst dye-excluded side population (SP), and leukemic cells in the SP population (LSP cells) were morphologically and immunophenotypically indistinguishable from other leukemic cells. However, expression of hematopoietic stem cell (HSC)-related genes was upregulated in the LSP cells. In cell-cycle analyses, LSP cells were quiescent like HSCs, but reentry into the cell cycle was stimulated by 5-FU treatment. Nonetheless, 5-FU treatment established a point of newly adjusted equilibrium in the LSP cells and the cells never recovered to their previous quiescent state. Conclusion. Based on this observation, distinct self-renewal regulatory mechanisms in LSCs may be considered as one of the causes of worsening of the features of leukemia after injury and relapse. (C) 2009 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据