4.3 Article

EXPERIMENTAL STUDY OF TWO PHASE CLOSED THERMOSYPHON USING CuO/WATER NANOFLUID IN THE PRESENCE OF ELECTRIC FIELD

期刊

EXPERIMENTAL HEAT TRANSFER
卷 28, 期 4, 页码 328-343

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/08916152.2014.883448

关键词

nanofluid; two-phase closed thermosyphon; electric field; thermal efficiency; heat transfer enhancement

资金

  1. King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

向作者/读者索取更多资源

In this article, the effect of applying an electric field on the performance of a two-phase closed thermosyphon is investigated experimentally. A CuO/water nanofluid is used as the working fluid in the present investigation; 40% of the evaporator volume is filled with the working fluid during the tests. An electric field in various voltages ranging from 5 to 20 kV is applied to the system. Also, the input power supplied to the evaporator varies between 60 to 120 W. The thermal efficiency and the thermal resistance of the two-phase closed thermosyphon are evaluated in various strengths of electric field and different volume fractions. It is found that using the nanofluid and applying an electric field could increase the thermal efficiency by up to 30% as compared with the case in which the working media is pure water and no electric field is applied. To illustrate the effect of the electric field on the heat transfer enhancement, the augmentation Nusselt number, defined as the ratio of the Nusselt numbers after and before applying the electric field, is discussed. The results show that utilizing an electric field is more advantageous when the input power applied to the system is lower.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据