4.6 Review

Coordination of tooth morphogenesis and neuronal development through tissue interactions: Lessons from mouse models

期刊

EXPERIMENTAL CELL RESEARCH
卷 325, 期 2, 页码 72-77

出版社

ELSEVIER INC
DOI: 10.1016/j.yexcr.2014.02.029

关键词

Tooth; Innervation; Odontogenesis; Tooth development; Tissue interactions

向作者/读者索取更多资源

In addition to being an advantageous model to investigate general molecular mechanisms of organ formation, the tooth is a distinct target organ for peripheral nerve innervation. These nerves are required for the function and protection of the teeth and, as shown in fish, also for their regeneration. This review focuses on recent findings of the local tissue interactions and molecular signaling mechanisms that regulate the early nerve arrival and patterning of mouse mandibular molar tooth sensory innervation. Dental sensory nerve growth and patterning is a stepwise process that is intimately linked to advancing tooth morphogenesis. In particular, nerve growth factor and semaphorin 3A serve as essential functions during and are iteratively used at different stages of tooth innervation. The tooth germ controls development of its own nerve supply, and similar to the development of the tooth organ proper, tissue interactions between dental epithelial and mesenchymal tissues control the establishment of tooth innervation. Tgf-beta, Wnt, and Fgf signaling, which regulate tooth formation, are implicated to mediate these interactions. Therefore, tissue interactions mediated by conserved signal families may constitute key mechanism for the integration of tooth organogenesis and development of its peripheral nerve supply. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据