4.6 Article

Construction of an artificial intercellular communication network using the nitric oxide signaling elements in mammalian cells

期刊

EXPERIMENTAL CELL RESEARCH
卷 314, 期 4, 页码 699-706

出版社

ELSEVIER INC
DOI: 10.1016/j.yexcr.2007.11.023

关键词

cell signaling; nitric oxide; synthetic circuits; gene expression; genetic engineering; mammalian cells

向作者/读者索取更多资源

To increase the functionality of synthetic genetic circuits for programming cell populations and coordinating behavior across a population, we developed and analyzed an artificial cell-to-cell communication system in mammalian cells using nitric oxide signaling elements by integrating nitric oxide synthesis with the c-fos promoter, whose transcription activity could be triggered by the nitric oxide pathway. In the system, engineered 'sender' cells synthesized the intercellular messenger nitric oxide, which diffused into the environment and activated the c-fos promoter, and subsequently, green fluorescence protein (GFP) reporter expression in nearby engineered 'receiver' cells. Next, the sender module was integrated into the receivers under positive-feedback regulation, resulting in population density-dependent GFP expression in a quorum-sensing pattern. This artificial cell-to-cell communication system in mammalian cells could serve as a versatile tool for regulated gene expression and as building blocks for complex artificial gene regulatory networks for applications in gene therapy, tissue engineering, and biotechnology. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据