4.3 Article

Analysis of Protein Thermostability Enhancing Factors in Industrially Important Thermus Bacteria Species

期刊

EVOLUTIONARY BIOINFORMATICS
卷 9, 期 -, 页码 327-342

出版社

SAGE PUBLICATIONS LTD
DOI: 10.4137/EBO.S12539

关键词

biotechnology; enzyme; evolution; folding energy; thermostability; 3D structures

资金

  1. SABINA Fellowship
  2. South African National Research Foundation [71261]

向作者/读者索取更多资源

Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据