4.5 Article

EVALUATING A SIMPLE APPROXIMATION TO MODELING THE JOINT EVOLUTION OF SELF-FERTILIZATION AND INBREEDING DEPRESSION

期刊

EVOLUTION
卷 67, 期 12, 页码 3628-3635

出版社

WILEY
DOI: 10.1111/evo.12216

关键词

Mixed mating; plants; pollen limitation; pollen discounting; recessive lethal mutations; selfing

资金

  1. French CNRS grant PICS [5273]
  2. Balzan foundation
  3. The Royal Society of London

向作者/读者索取更多资源

A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02-0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据