4.6 Article

Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction

期刊

EUROPEAN RESPIRATORY JOURNAL
卷 36, 期 5, 页码 1016-1026

出版社

EUROPEAN RESPIRATORY SOC JOURNALS LTD
DOI: 10.1183/09031936.00125809

关键词

E-cadherin; epithelial junctions; protease-activated receptor-2; transforming growth factor-beta; zona occludens-1

资金

  1. Netherlands Asthma Foundation [3.2.05.039]
  2. Kidney Foundation of Canada
  3. National Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Impaired airway epithelial barrier function has emerged as a key factor in the pathogenesis of allergic asthma. We aimed to discern the involvement of the epidermal growth factor receptor (EGFR) in allergen-induced epithelial barrier impairment, as we previously observed that house dust mite (HDM) signals through EGFR. We investigated the junctional integrity of human bronchial epithelial cells using electric cell-substrate impedance sensing and immunofluorescent staining. HDM induced a rapid, transient fall in epithelial resistance, concomitant with delocalisation of E-cadherin and zona occludens (ZO)-1, and proteolytic cleavage of the latter. EGFR inhibition by AG1478 reduced the HDM-triggered decrease in epithelial resistance and improved restoration of epithelial junctions. Similarly, AG1478 increased epithelial barrier recovery upon electroporation-induced injury, although it delayed the migration phase of the wound healing response. HDM-promoted redistribution of E-cadherin was mediated via EGFR-dependent activation of protease-activated receptor (PAR)-2, while the concomitant ZO-1 degradation was PAR-2/EGFR-independent. Importantly, the fibrogenic cytokine transforming growth factor (TGF)-beta prolonged HDM-induced EGFR phosphorylation and inhibited ligand-induced EGFR internalisation/degradation, which resulted in sustained E-cadherin and ZO-1 redistribution. Thus, allergen-induced, PAR-2/EGFR-mediated signalling decreases epithelial resistance and promotes junction disassembly. The TGF-beta-enhanced EGFR signalling may be an important contributor to barrier dysfunction and increased epithelial vulnerability in response to HDM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据