4.8 Article

Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes

期刊

ACS NANO
卷 10, 期 1, 页码 463-474

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b05377

关键词

membranes and vesicles; aqueous polymer solutions; membrane nanotubes; tube nucleation and growth; bilayer asymmetry; spontaneous curvature; PEG adsorption

资金

  1. Partner Group Program of the Max Planck Society
  2. Chinese Academy of Sciences
  3. National Natural Science Foundation of China [21274147]
  4. German Science Foundation (DFG) via IRTG [1524]
  5. Federal Ministry of Education and Research (BMBF) via consortium MaxSynBio

向作者/读者索取更多资源

Biological membranes form both intra- and intercellular nanotubes that are used for molecular sorting within single cells and for long-distance connections-between different cells. Such nanotubes can also develop from synthetic lipid bilayers in their fluid state. Each nanotube has a large areaf-to-volume ratio and stably encloses a water channel that is thereby shielded from its surroundings. The tubes are rather flexible and can easily change both their length and their conformation. Here, we study nanotubes formed by liquid-ordered (Lo) and liquid-disordered (Ld) membranes with three lipid components exposed to aqueous mixtures of two polymers, polyethylene glycol (PEG) and dextran. Both types of membranes form striking patterns of nanotubes when we reduce the volume of giant vesicles by osmotic deflation, thereby exposing the two bilayer leaflets of the membranes to polymer solutions of different composition. With decreasing volume, three different patterns are observed corresponding to three distinct vesicle morphologies that reflect the interplay of spontaneous curvature and aqueous phase separation. We show that tube nucleation and growth is governed by two kinetic pathways and that the tubes undergo a novel shape transformation from necklace-like to cylindrical tubes at a certain critical tube length. We-deduce the spontaneous curvature generated by the membrane-polymer interactions from the observed vesicle morphologies using three different and independent methods of image analysis. The spontaneous curvature of the Ld membranes is found to be 4.7 times larger than that of the Lo membranes. We also show that these curvatures are generated by weak PEG adsorption onto the membranes, with a binding affinity of about 1.6 k(B)T per chain. In this way, our study provides a direct connection between nanoscopic membrane shapes and molecular interactions. Our approach is rather general and can be applied to many other systems of interest such as polymersomes or membrane-bound proteins and peptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据