4.7 Article

Impact of synthetic talc on PLLA electrospun fibers

期刊

EUROPEAN POLYMER JOURNAL
卷 49, 期 9, 页码 2572-2583

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2013.05.017

关键词

Electrospinning; PLLA; Talc; Wettability

资金

  1. Direct For Mathematical & Physical Scien
  2. Division Of Materials Research [1206010] Funding Source: National Science Foundation

向作者/读者索取更多资源

Poly(L-lactic acid) (PLLA) is an important biomaterial with application as surgical meshes, sutures, and in artificial tissue. Here we prepared novel fibers by electrospinning solutions containing PLLA and a specially synthesized talc (ts), characterized by the presence of aliphatic chains in the structure and completely soluble in the electrospinning solutions. Even a small amount of ts (2 wt.%) in the toluene/chloroform solvent increases the solution viscosity, most likely because of specific interactions between talc and PLLA. Morphological characterization demonstrated that homogenous fibers, of neat PLLA and PLLA/ts, are obtained by proper choice of electrospinning conditions. Among the parameters studied, relative humidity (Rh) was found significantly to affect fiber morphology. Morphological homogeneity increases by increasing Rh. In contrast to fibers containing a commercial talc, which is insoluble in the electrospinning mixture, and whose aggregates render the fiber irregular, in the case of PLLA/ts fibers the dispersion of the synthetic talc is achieved at the nanometric length scale. Electrospun mats based on PLLA/ts showed a much higher water contact angle than the neat PLLA mats, the contact angle increasing from 92 degrees to ca. 140 degrees, thus highlighting that a superhydrophobic PLLA surface is obtained by dispersing synthetic talc into PLLA fibers, widening the potential for biomedical applications of this material. Fiber properties of superhydrophobic PLLA were studied by means of differential scanning calorimetry (DSC), static and real-time wide angle X-ray diffraction (WAXD), and water contact angle measurements. Talc was found to promote the development of a small amount of crystallinity during the electrospinning process, and to favor the development of the alpha crystallographic form during annealing. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据