4.7 Article

Polyolefin/layered silicate nanocomposites with functional compatibilizers

期刊

EUROPEAN POLYMER JOURNAL
卷 47, 期 4, 页码 600-613

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2010.09.028

关键词

Polyolefin nanocomposites; Layered silicates; Polymeric compatibilizer; Intercalation; Exfoliation

资金

  1. European Union [G5RD-CT-2002-00834]
  2. Greek General Secretariat of Research and Technology [03Edelta581]
  3. NATO Scientific Affairs Division

向作者/读者索取更多资源

Polymer nanocomposites containing layered silicates have been considered as a new generation of composite materials due to their expected unique properties attributed to the high aspect ratio of the inorganic platelets. Nevertheless, addition of layered silicates to polyolefins mostly results in phase separated systems because of the incompatibility of the silicates with the non-polar polyolefins. Functional compatibilizers are required to enhance the interactions and alter the structure from phase separated micro-composites to intercalated and exfoliated nanocomposites. Commercial macromolecular compatibilizers (mainly maleic-anhydride-functionalized polyolefins) are most commonly used to improve the interfacial bonding between the fillers and the polymers whereas specifically synthesized functional homopolymers or copolymers have been utilized as well. In this article, we are reviewing a number of investigations, which studied the influence on the composite structure of various parameters like the compatilizer to inorganic ratio, the type and content of the functional groups and the molecular weight of the functional additive, the miscibility between the matrix polymer and the compatibilizer, the kind of surfactants modifying the inorganic surface, the processing conditions, etc. The most important results obtained utilizing maleic-anhydride-functionalized polyolefins are discussed first, whereas a summary is presented then of the studies performed utilizing other functional oligomers/polymers. X-ray diffraction and transmission electron microscopy studies supported by rheology indicate that the most important factor controlling the structure and the properties is the ratio of functional additive to organoclay whereas the miscibility between the matrix polymer and the compatibilizer is a prerequisite. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据