4.7 Article

Block copolymer-directed metal nanoparticle morphogenesis and organization

期刊

EUROPEAN POLYMER JOURNAL
卷 47, 期 4, 页码 569-583

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2010.10.021

关键词

Gold nanocrystal; Pluronic; Dendrimer; Ionic liquid; Liquid crystal template; Nanocomposite

向作者/读者索取更多资源

Advances in the nanoscale design of polymeric, soft materials and of metallic, hard materials can converge at the interfaces to form hybrid nanomaterials with interesting features. Novel optical, magnetic, electronic, and catalytic properties are conferred by metal nanoparticles, depending on their morphology (size and shape), surface properties, and long-range organization. We review here the utilization of block copolymers for the controlled synthesis and stabilization of metal nanoparticles. Solvated block copolymers can provide nanoscale environments of varying and tunable shape, dimensions, mobility, local polarity, concentration, and reactivity. In particular, block copolymers containing poly(ethylene oxide) can exhibit multiple functions on the basis of their organization at the intra-polymer level (i.e., crown ether-like cavities that bind and reduce metal ions), and at the supramolecular level (surface-adsorbed micelles, and ordered arrays of micelles). These block copolymers can thus initiate metal nanoparticle formation, and control the nanoparticle size and shape. The physically adsorbed block copolymers, which can be subsequently removed or exchanged with other functional ligands, stabilize the nanoparticles and can facilitate their integration into diverse processes and products. Block copolymers can be further useful in promoting long-range nanoparticle organization. Several studies have elucidated the nanoparticle synthesis and stabilization mechanism, optimized the conditions for different outcomes, extended the ranges of materials obtained and applications impacted, and generalized the scope of this functional polymer-based nanoparticle synthesis methodology. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据