4.3 Article

Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 28, 期 3, 页码 243-264

出版社

SPRINGER
DOI: 10.1140/epje/i2008-10433-1

关键词

-

向作者/读者索取更多资源

We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented by D. Lacoste, M. Cosentino Lagomarsino, and J.F. Joanny (EPL 77, 18006 (2007)), by providing a physical explanation for a destabilizing term proportional to k(perpendicular to)(3) in the fluctuation spectrum, which we relate to a nonlinear (E-2) electrokinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives the flow along the field axis toward surface protrusions; in contrast, we predict reverse ICEO flows around driven membranes, due to curvature-induced tangential fields within a nonequilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据