4.3 Article

Spontaneous movements and linear response of a noisy oscillator

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 29, 期 4, 页码 449-460

出版社

SPRINGER
DOI: 10.1140/epje/i2009-10487-5

关键词

-

向作者/读者索取更多资源

A deterministic system that operates in the vicinity of a Hopf bifurcation can be described by a single equation of a complex variable, called the normal form. Proximity to the bifurcation ensures that on the stable side of the bifurcation (i.e. on the side where a stable fixed point exists), the linear-response function of the system is peaked at the frequency that is characteristic of the oscillatory instability. Fluctuations, which are present in many systems, conceal the Hopf bifurcation and lead to noisy oscillations. Spontaneous hair bundle oscillations by sensory hair cells from the vertebrate ear provide an instructive example of such noisy oscillations. By starting from a simplified description of hair bundle motility based on two degrees of freedom, we discuss the interplay of nonlinearity and noise in the supercritical Hopf normal form. Specifically, we show here that the linear-response function obeys the same functional form as for the noiseless system on the stable side of the bifurcation but with effective, renormalized parameters. Moreover, we demonstrate in specific cases how to relate analytically the parameters of the normal form with added noise to effective parameters. The latter parameters can be measured experimentally in the power spectrum of spontaneous activity and linear-response function to external stimuli. In other cases, numerical solutions were used to determine the effects of noise and nonlinearities on these effective parameters. Finally, we relate our results to experimentally observed spontaneous hair bundle oscillations and responses to periodic stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据