4.7 Article

QED bremsstrahlung in decays of electroweak bosons

期刊

EUROPEAN PHYSICAL JOURNAL C
卷 73, 期 11, 页码 -

出版社

SPRINGER
DOI: 10.1140/epjc/s10052-013-2625-1

关键词

-

资金

  1. Polish National Science Centre [DEC-2011/03/B/ST2/00220, DEC-2012/04/M/ ST2/00240]
  2. Russian Foundation for Basic Research [10-02-01030-a]

向作者/读者索取更多资源

Isolated lepton momenta, in particular their directions are the most precisely measured quantities in pp collisions at LHC. This offers opportunities for multitude of precision measurements. It is of practical importance to verify if precision measurements with leptons in the final state require all theoretical effects evaluated simultaneously or if QED bremsstrahlung in the final state can be separated without unwanted precision loss. Results for final-state bremsstrahlung in the decays of narrow resonances are obtained from the Feynman rules of QED in an unambiguous way and can be controlled with a very high precision. Also for resonances of non-negligible width, if calculations are appropriately performed, such separation from the remaining electroweak effects can be expected. Our paper is devoted to validation that final-state QED bremsstrahlung can indeed be separated from the rest of QCD and electroweak effects, in the production and decay of Z and W bosons, and to estimation of the resulting systematic error. The quantitative discussion is based on Monte Carlo programs PHOTOS and SANC, as well as on KKMC which is used for benchmark results. We show that for a large class of W and Z boson observables as used at LHC, the theoretical error on photonic bremsstrahlung is 0.1 or 0.2 %, depending on the program options used. An overall theoretical error on the QED final-state radiation, i.e. taking into account missing corrections due to pair emission and interference with initial state radiation is estimated respectively at 0.2 % or 0.3 % again depending on the program option used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据