4.2 Review

Noise effects in two different biological systems

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 69, 期 1, 页码 133-146

出版社

SPRINGER
DOI: 10.1140/epjb/e2009-00162-y

关键词

-

资金

  1. MIUR
  2. INFM-CNISM
  3. COCOS project 6th EU Framework Programme [MTKDCT2004-517186]

向作者/读者索取更多资源

We investigate the role of the colored noise in two biological systems: (i) adults of Nezara viridula (L.) (Heteroptera: Pentatomidae), and (ii) polymer translocation. In the first system we analyze, by directionality tests, the response of N. viridula individuals to subthreshold signals plus noise in their mating behaviour. The percentage of insects that react to the subthreshold signal shows a nonmonotonic behaviour, characterized by the presence of a maximum, as a function of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a soft threshold model we find that the maximum of the input-output cross correlation occurs in the same range of noise intensity values for which the behavioural activation of the insects has a maximum. Moreover this maximum value is lowered and shifted towards higher noise intensities, compared to the case of white noise. In the second biological system the noise driven translocation of short polymers in crowded solutions is analyzed. An improved version of the Rouse model for a flexible polymer is adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and the effects of a Lennard-Jones potential between all beads. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion in the presence of thermal fluctuations and a colored noise source. At low temperatures or for strong colored noise intensities the translocation process of the polymer chain is delayed. At low noise intensity, as the polymer length increases, we find a nonmonotonic behaviour for the mean first translocation time of the polymer centre of inertia. We show how colored noise influences the motion of short polymers, by inducing two different regimes of translocation in the dynamics of molecule transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据