4.2 Article

Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 65, 期 3, 页码 435-442

出版社

SPRINGER
DOI: 10.1140/epjb/e2008-00246-2

关键词

-

资金

  1. MUR
  2. INFM-CNISM
  3. EU [MTKDCT2004- 517186]
  4. Volkswagen Foundation [I/80424]

向作者/读者索取更多资源

We investigate a mathematical model describing the growth of tumor in the presence of immune response of a host organism. The dynamics of tumor and immune cells populations is based on the generic Michaelis-Menten kinetics depicting interaction and competition between the tumor and the immune system. The appropriate phenomenological equation modeling cell-mediated immune surveillance against cancer is of the predator-prey form and exhibits bistability within a given choice of the immune response-related parameters. Under the influence of weak external fluctuations, the model may be analyzed in terms of a stochastic differential equation bearing the form of an overdamped Langevin-like dynamics in the external quasi-potential represented by a double well. We analyze properties of the system within the range of parameters for which the potential wells are of the same depth and when the additional perturbation, modeling a periodic treatment, is insufficient to overcome the barrier height and to cause cancer extinction. In this case the presence of a small amount of noise can positively enhance the treatment, driving the system to a state of tumor extinction. On the other hand, however, the same noise can give rise to return effects up to a stochastic resonance behavior. This observation provides a quantitative analysis of mechanisms responsible for optimization of periodic tumor therapy in the presence of spontaneous external noise. Studying the behavior of the extinction time as a function of the treatment frequency, we have also found the typical resonant activation effect: For a certain frequency of the treatment, there exists a minimum extinction time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据