4.8 Article

Enhancing the Reversibility of Mg/S Battery Chemistry through Li+ Mediation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 38, 页码 12388-12393

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b07820

关键词

-

资金

  1. Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0001160]
  2. Maryland NanoCenter
  3. AIM Lab

向作者/读者索取更多资源

Mg metal is a promising anode material for next generation rechargeable battery due to its dendrite-free deposition and high capacity. However, the best cathode for rechargeable Mg battery was based on high molecular weight MgxMo3S4, thus rendering full cell energetically uncompetitive. To increase energy density, high capacity cathode material like sulfur is proposed. However, to date, only limited work has been reported on Mg/S system, all plagued by poor reversibility attributed to the formation of electrochemically inactive MgSx species. Here, we report a new strategy, based on the effect of Li+ in activating activating MgSx species, to conjugate a dendrite-free Mg anode with a reversible polysulfide cathode and present a truly reversible Mg/S battery with capacity up to 1000 mAh/g(s) for more than 30 cycles. Mechanistic insights supported by spectroscopic and microscopic characterization strongly suggest that the reversibility arises from chemical reactivation of MgSx by Li+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据