4.8 Article

Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 4, 页码 1530-1538

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja511132a

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FC02-04ER15533]
  2. Jana & Patrick Eilers Energy Research Fellowship
  3. University of Notre Dame through iSURE undergraduate fellowship program

向作者/读者索取更多资源

Humidity has been an important factor, in both negative and positive ways, in the development of perovskite solar cells and will prove critical in the push to commercialize this exciting new photovoltaic technology. The interaction between CH3NH3PbI3 and H2O vapor is investigated by characterizing the ground-state and excited-state optical absorption properties and probing morphology and crystal structure. These undertakings reveal that H2O exposure does not simply cause CH3NH3PbI3 to revert to PbI2. It is shown that, in the dark, H2O is able to complex with the perovskite, forming a hydrate product similar to (CH3NH3)4PbI(6)center dot 2H(2)O. This causes a decrease in absorption across the visible region of the spectrum and a distinct change in the crystal structure of the material. Femtosecond transient absorption spectroscopic measurements show the effect that humidity has on the ultrafast excited state dynamics of CH3NH3PbI3. More importantly, the deleterious effects of humidity on complete solar cells, specifically on photovoltaic efficiency and stability, are explored in the light of these spectroscopic understandings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据