4.8 Article

Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 46, 页码 14765-14772

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b09918

关键词

-

资金

  1. National Research Fund for Fundamental Key Projects [2011CB935703, 2011CB935702]
  2. National Natural Science Foundation [21171171, 21434003, 91427303, 21201170, 91127025, 21421061]
  3. Key Research Program of Chinese Academy of Sciences [KJZDEW-M03]

向作者/读者索取更多资源

Engineered asymmetric membranes for intelligent molecular and ionic transport control at the nanoscale have gained significant attention and offer prospects for broad application in nanofluidics, energy conversion, and biosensors. Therefore, it is desirable to construct a high-performance heterogeneous membrane capable of coordinating highly selective and rectified ionic transport with a simple, versatile, engineered method to mimic the delicate functionality of biological channels. Here, we demonstrate an engineered asymmetric heterogeneous membrane by combining a porous block copolymer (BCP) membrane, polystyrene-b-poly(4-vinylpyridine) (PS48400-b-P4VP(21300)), with a track-etched asymmetric porous polyethylene terephthalate membrane. The introduction of chemical, geometrical, and electrostatic heterostructures provides our heterogeneous membrane with excellent anion selectivity and ultrahigh ionic rectification with a ratio of ca. 1075, which is considerably higher than that of existing ionic rectifying systems. This anion-selective heterogeneous membrane was further developed into an energy conversion device to harvest the energy stored in an electrochemical concentration gradient. The concentration polarization phenomenon that commonly exists in traditional reverse electrodialysis can be eliminated with an asymmetric bipolar structure, which considerably increases the output power density. This work presents an important paradigm for the use of versatile BCPs in nanofluidic systems and opens new and promising routes to various breakthroughs in the fields of chemistry, materials science, bioscience, and nanotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据