4.8 Article

Conjugated Polymer-Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 25, 页码 8176-8183

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b03449

关键词

-

资金

  1. National Natural Science Foundation of China [21125420, 91427302]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA0909040200]
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Ternary organic solar cells are promising candidates for bulk heterojunction solar cells; however, improving the power conversion efficiency (PCE) is quite challenging because the ternary system is complicated on phase separation behavior. In this study, a ternary organic solar cell (OSC) with two donors, including one polymer (PTB7-Th), one small molecule (p-DTS(FBTTH2)(2)), and one acceptor (PC71BM), is fabricated. We propose the two donors in the ternary blend forms an alloy. A notable averaged PCE of 10.5% for ternary OSC is obtained due to the improvement of the fill factor (FF) and the short-circuit current density (J(sc)), and the open-circuit voltage (V-oc) does not pin to the smaller V-oc of the corresponding binary blends. A highly ordered face-on orientation of polymer molecules is obtained due to the formation of an alloy structure, which facilitates the enhancement of charge separation and transport and the reduction of charge recombination. This work indicates that a high crystallinity and the face-on orientation of polymers could be obtained by forming alloy with two miscible donors, thus paving a way to largely enhance the PCE of OSCs by using the ternary blend strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据