4.8 Article

Tuning the Electromechanical Properties of Single DNA Molecular Junctions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 43, 页码 13933-13937

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b08668

关键词

-

资金

  1. ONR [N00014-11-1-0729]

向作者/读者索取更多资源

Understanding the interplay between the electrical and mechanical properties of DNA molecules is important for the design and characterization of molecular electronic devices, as well as understanding the role of charge transport in biological functions. However, to date, force-induced melting has limited our ability to investigate the response of DNA molecular conductance to stretching. Here we present a new molecule electrode linker based on a hairpin-like design, which prevents force-induced melting at the end of single DNA molecules during stretching by stretching both strands of the duplex evenly. We find that the new linker group gives larger conductance than previously measured DNA-electrode linkers, which attach to the end of one strand of the duplex. In addition to changing the conductance the new linker also stabilizes the molecule during stretching, increasing the length a single DNA molecule can be stretched before an abrupt decrease in conductance. Fitting these electromechanical properties to a spring model, we show that distortion is more evenly distributed across the single DNA molecule during stretching, and thus the electromechanical effects of the pi-pi coupling between neighboring bases is measured.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据