4.8 Article

G4-Quartet•M+ Borate Hydrogels

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 17, 页码 5819-5827

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b02753

关键词

-

资金

  1. US DOE [DE-FG01-98ER14888]
  2. EPSRC [EP/K003674/1]
  3. US Dept. of Education
  4. Engineering and Physical Sciences Research Council [EP/L027100/1, EP/K003674/1] Funding Source: researchfish
  5. EPSRC [EP/K003674/1, EP/L027100/1] Funding Source: UKRI

向作者/读者索取更多资源

The ability to modulate the physical properties of a supramolecular hydrogel may be beneficial for biomaterial and biomedical applications. We find that guanosine (G 1), when combined with 0.5 equiv of potassium borate, forms a strong, self-supporting hydrogel with elastic moduli >10 kPa. The countercation in the borate salt (MB(OH)(4)) significantly alters the physical properties of the hydrogel. The gelator combination of G 1 and KB(OH)(4) formed the strongest hydrogel, while the weakest system was obtained with LiB(OH)(4), as judged by H-1 NMR and rheology. Data from powder XRD, H-1 double-quantum solid-state magic-angle spinning (MAS) NMR and small-angle neutron scattering (SANS) were consistent with a structural model that involves formation of borate dimers and G4 center dot K+ quartets by G 1 and KB(OH)(4). Stacking of these G4 center dot M+ quartets into G4-nanowires gives a hydrogel. We found that the M+ cation helps stabilize the anionic guanosine-borate (GB) diesters, as well as the G4-quartets. Supplementing the standard gelator mixture of G 1 and 0.5 equiv of KB(OH)(4) with additional KCl or KNO3 increased the strength of the hydrogel. We found that thioflavin T fluoresces in the presence of G4 center dot M+ precursor structures. This fluorescence response for thioflavin T was the greatest for the K+ GB system, presumably due to the enhanced interaction of the dye with the more stable G4 center dot K+ quartets. The fluorescence of thioflavin T increased as a function of gelator concentration with an increase that correlated with the system's gel point, as measured by solution viscosity

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据