4.5 Article

Ranking factors affecting emissions of GHG from incubated agricultural soils

期刊

EUROPEAN JOURNAL OF SOIL SCIENCE
卷 65, 期 4, 页码 573-583

出版社

WILEY
DOI: 10.1111/ejss.12143

关键词

-

资金

  1. UK Biotechnology and Biological Sciences Research Council at Rothamsted Research
  2. Spanish Ministry of Science and Innovation [AGL2009-08412-AGR]
  3. Autonomous Community of Madrid
  4. Biotechnology and Biological Sciences Research Council [BB/K001051/1] Funding Source: researchfish
  5. BBSRC [BB/K001051/1] Funding Source: UKRI

向作者/读者索取更多资源

Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3-) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L-16 design, comprising 16 experimental units. Within this L-16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3- addition were the main factors affecting N2O fluxes, whilst glucose, NO3- and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据