4.8 Article

Cell-Permeable Cyclic Peptides from Synthetic Libraries Inspired by Natural Products

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 2, 页码 715-721

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja508766b

关键词

-

资金

  1. MedImmune, Ltd.

向作者/读者索取更多资源

Drug design efforts are turning to a new generation of therapeutic targets, such as protein-protein interactions (PPIs), that had previously been considered undruggable by typical small molecules. There is an emerging view that accessing these targets will require molecules that are larger and more complex than typical small molecule drugs. Here, we present a methodology for the discovery of geometrically diverse, membrane permeable cyclic peptide scaffolds based on the synthesis and permeability screening of a combinatorial library, followed by deconvolution of membrane-permeable scaffolds to identify cyclic peptides with good to excellent passive cell permeabilities. We use a combination of experimental and computational approaches to investigate structure-permeability relationships in one of these scaffolds, and uncover structural and conformational factors that govern passive membrane diffusion in a related set of cyclic peptide diastereomers. Further, we investigate the dependency of permeability on side-chain identity of one of these scaffolds through single-point diversifications to show the adaptability of these scaffolds toward development of permeability-biased libraries suitable for bioactivity screens. Overall, our results demonstrate that many novel, cell permeable scaffolds exist beyond those found in extant natural products, and that such scaffolds can be rapidly identified using a combination of synthesis and deconvolution which can, in principle, be applied to any type of macrocyclic template.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据