4.6 Article

Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping

期刊

EUROPEAN JOURNAL OF SOIL BIOLOGY
卷 45, 期 3, 页码 239-246

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejsobi.2009.02.005

关键词

Long-term experiment; Microbial community; Biomass; Genetic fingerprint; Wheat; Rice

资金

  1. Sichuan Agricultural University
  2. National Key Technology R & D Program of China [2006 BAD05B06, 2006BAD 02A 14-13]

向作者/读者索取更多资源

Soil microbial biomass carbon (SMBC) and nitrogen (SMBN), soil microbial community structure, and crop yields were studied in a long-term (1982-2004) fertilization experiment carried out in Suining, Sichuan province of PR China. Eight treatments included three chemical fertilizer (CF) treatments (N, NP, NPK), three CF + farmyard manure (M) treatments (NM, NPM, NPKM), M alone and no fertilizer (CK) as control. The results showed that the soil microbial biomass was higher in soil treated with CFM than in soil treated with CF alone, and that NPKM gave the highest rice and wheat yields. The SMBC and SMBN were higher after rice than those after wheat cropping. SMBC correlated closely with soil organic matter. Average yields of wheat and rice for 22 years were higher and more stable in the fertilized plots than in control plots. Bacterial community structure was analyzed by PCR-DGGE targeting eubacterial 16S rRNA genes. A higher diversity of the soil bacterial community was found in soil amended with CFM than in other fertilizer treatments. Some specific band emerged in the soil amended with M. The highest diversity of bacterial communities was found in the NPKM treated soil. The bacterial community structures differed in rice and wheat plots. Sequencing of PCR products separated in DGGE showed that some of the common and dominant bands were closely related to Aquicella lusitana and to Acidobacteria. This study demonstrated that mixed application of N, P, and K with additional M amendment increased soil microbial biomass, diversified the bacterial communities and maintained the crop production in the Calcareous Purplish Paddy soil. (C) 2009 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据