4.8 Article

A Small-Molecule Photoactivatable Optical Sensor of Transmembrane Potential

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 34, 页码 10894-10897

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b05538

关键词

-

资金

  1. University of California
  2. NIH [R00NS078561]
  3. NSERC

向作者/读者索取更多资源

This paper discloses the design, synthesis, and imaging applications of the first member of a new class of SPOTs, small-molecule photoactivatable optical sensors of transmembrane potential. SPOT2.1.Cl features an established voltage-sensitive dye, VoltageFluor2.1.Cl-or VF-capped with a dimethoxy-o-nitrobenzyl (DMNB) caging group to effectively diminish fluorescence of the VF dye prior to uncaging. SPOT2.1.Cl localizes to cell membranes and displays weak fluorescence until photoactivated. Illumination generates the parent VF dye which then optically reports on changes in the membrane voltage. After photoactivation with spatially restricted light, SPOT2.1.Cl-loaded cells display bright, voltage-sensitive fluorescence associated with the plasma membrane, while neighboring cells remain dark. Activated SPOT reports on action potentials in single trials. SPOT can be activated in neuron cell bodies or uncaged in dendrites to enable structural tracing via backfilling of the dye to the soma, followed by functional imaging in the labeled cell. The combination of cellular specificity achieved through spatially defined patterns of illumination, coupled with the fast, sensitive, and noncapacitive voltage sensing characteristics of VF dyes makes SPOT2.1.Cl a useful tool for interrogating both structure and function of neuronal systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据