4.7 Article

Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: Studies in human GnRH receptor knock-in mice

期刊

EUROPEAN JOURNAL OF PHARMACOLOGY
卷 723, 期 -, 页码 167-174

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2013.12.001

关键词

GnRH antagonist; Human GnRH receptor knock-in mouse; Endometriosis; Uterine fibroids; Prostate cancer; TAK-385

资金

  1. Millennium: The Takeda Oncology Company

向作者/读者索取更多资源

TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TALK-385 and TALK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TALK-013 (10 mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100 mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomizecl levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 clays and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone dependent diseases including endometriosis, uterine fibroids and prostate cancer. (C) 2013 Elsevier B.V. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据