4.7 Article

Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2008.03.006

关键词

protein precipitation; protein stability; microspheres; poly(lactic-co-glycolic acid) (PLGA); solid-in-oil-in-water (s/o/w) encapsulation procedure

资金

  1. French Ministere de l'Education Nationale et de la Recherche
  2. Integrated Project [LSHB-CT-2003-03161]

向作者/读者索取更多资源

Proteins were precipitated to ensure their stability upon subsequent encapsulation within PLGA microspheres. Spherical, nanosized protein particles were formed by the addition of a salt (sodium chloride) and a water-miscible organic solvent (glycofurol) to protein solutions. Various process parameters were modified to optimize the precipitation efficiency of four model proteins: lysozyme, alpha-chymotrypsin, peroxidase and beta-galactosidase. As monitored by enzymatic activity measurement of the rehydrated particles, conditions to obtain more than 95% of reversible precipitates were defined for each protein. The study of the structure of the rehydrated particles by absorbance spectroscopy, fluorescence spectroscopy and circular dichroism showed an absence of structural-perturbation after precipitation. Protein particles were then microencapsulated within PLGA microspheres using s/o/w technique. The average encapsulation yield was around 80% and no loss of protein activity occurred after the encapsulation step. Additionally, a lysozyme in vitro release study showed that all of the released lysozyme was biologically active. This method of protein precipitation is appropriate for the encapsulation in PLGA microspheres of various proteins without inactivation. (c) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据