4.7 Article

Design and evaluation of floating multi-layer coated tablets based on gas formation

出版社

ELSEVIER
DOI: 10.1016/j.ejpb.2007.09.013

关键词

floating tablets; gastroretentive drug delivery system; gas formation; gas-entrapped membrane; sustained release

向作者/读者索取更多资源

Floating multi-layer coated tablets were designed based on gas formation. The system consists of a drug-containing core tablet coated with a protective layer (hydroxypropyl methylcellulose), a gas forming layer (sodium bicarbonate) and a gas-entrapped membrane, respectively. The mechanical properties of acrylic polymers (Eudragit (R) RL 30D, RS 30D, NE 30D) and ethylcellulose were characterized by the puncture test in order to screen a suitable film for the system. Eudragit (R) RL 30D was chosen as a gas-entrapped membrane due to its high flexibility and high water permeability. The obtained tablets enabled to float due to the CO2-gas formation and the gas entrapment by polymeric membrane. The effect of formulation variables on floating properties and drug release was investigated. The floating tablets using direct-compressed cores had shorter time to float and faster drug release than those using wet-granulated cores. The increased amount of a gas forming agent did not affect time to float but increased the drug release from the floating tablets while increasing coating level of gas-entrapped membrane increased time to float and slightly retarded drug release. Good floating properties and sustained drug release were achieved. These floating tablets seem to be a promising gastroretentive drug delivery system. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据