4.7 Article

Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2007.05.020

关键词

chitosan; hydrogel; thermogelling; glycerol phosphate; rheology; EPR; ESR

向作者/读者索取更多资源

Chitosan, an amino-polysaccharide, has been proposed as a promising biopolymer for tissue repair and drug delivery. Chitosan solutions containing glycerol-2-phosphate (beta-GP) have been described as injectable in situ gelling thermosensitive formulations, which undergo sol-gel transition at physiological pH and temperatures. This feature makes them suitable for the parenteral administration of drugs, especially for peptides and proteins. The aim of the present study was to get a deeper insight into the macro- and microstructure of chitosan/beta-GP systems. In addition to oscillating rheology, electron paramagnetic resonance (EPR) spectroscopy was applied to examine the microviscosity and pH inside the gels depending on the P-GP concentration and to follow the loading and release of spin-labelled Insulin. All chitosan/beta-GP solutions showed a physiological pH ranging from 6.6 to 6.8 that did not change during gelation, irrespective of the proportion of P-GP. The dynamics of the spin-labelled Insulin and its microviscosity inside the gels and during release were monitored by EPR spectroscopy. The results indicate that the Insulin was incorporated into the aqueous environment of the gel and was released in its native form. The in vitro drug release from the gels was governed by diffusion of drug from the gel matrix. A sustained release of Insulin was observed over a period of 2 weeks. Increasing the proportion of beta-GP increased the amount of released Insulin and the velocity thereof. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据