4.6 Article

In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: Application of the mechanistic absorption model GI-Sim

期刊

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
卷 49, 期 4, 页码 679-698

出版社

ELSEVIER
DOI: 10.1016/j.ejps.2013.05.019

关键词

Solubility; Intestinal permeability; Absorption modeling; In silico prediction; Fraction absorbed

资金

  1. AstraZeneca R&D Molndal, Molndal, Sweden

向作者/读者索取更多资源

Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (f(abs)) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C-max and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC was within one standard deviation of the observed mean plasma AUC in 74% of the simulations. GI-Sim was also able to correctly capture the trends in dose-and particle size dependent absorption for the study drugs with solubility and dissolution limited absorption, respectively. In addition, GI-Sim was also shown to be able to predict the increase in absorption and plasma exposure achieved with nanoformulations. Based on the results, the performance of GI-Sim was shown to be suitable for early risk assessment as well as to guide decision making in pharmaceutical formulation development. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据