4.4 Article

Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception

期刊

EUROPEAN JOURNAL OF PAIN
卷 14, 期 4, 页码 351-358

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ejpain.2009.07.005

关键词

Capsaicin-sensitive sensory nerves; Arthritis; Mechanical hyperalgesia; Allodynia; Inflammatory cytokines

资金

  1. OTKA [K73044, NK78059]
  2. Janos Bolyai Postdoctoral Research

向作者/读者索取更多资源

Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor activated through proteolytic cleavage. It is localized on epithelial, endothelial and inflammatory cells, as well as on transient receptor potential vanilloid 1 (TRPV1) receptor-expressing neurones. It plays an important role in inflammatory/nociceptive processes. Since there are few reports concerning PAR-2 function in joints, the effects of intra-articular PAR-2 activation on joint pain and inflammation were studied. Secondary hyperalgesia/allodynia, spontaneous weight distribution, swelling and inflammatory cytokine production were measured and the involvement of TRPV1 ion channels was investigated in rats and mice. Injection of the PAR-2 receptor agonist SLIGRL-NH(2) into the knee decreased touch sensitivity and weight bearing of the ipsilateral hindlimb in both species. Secondary mechanical allodynia/hyperalgesia and impaired weight distribution were significantly reduced by the TRPV1 antagonist SB366791 in rats and by the genetic deletion of this receptor in mice. PAR-2 activation did not cause significant joint swelling, but increased IL-1 beta concentration which was not influenced by the lack of the TRPV1 channel. For comparison, intraplantar SLIGRL-NH(2) evoked similar primary mechanical hyperalgesia and impaired weight distribution in both WT and TRPV1 deficient mice, but oedema was smaller in the knockouts. The inactive peptide, LRGILS-NH(2), injected into either site did not induce any inflammatory or nociceptive changes. These data provide evidence for a significant role of TRPV1 receptors in secondary mechanical hyperalgesia/allodynia and spontaneous pain induced by PAR-2 receptor activation in the knee joint. Although intraplantar PAR-2 activation-induced oedema is also TRPV1 receptor-mediated, primary mechanical hyperalgesia, impaired weight distribution and IL-1 beta production are independent of this channel. (C) 2009 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据