4.7 Article

Infrastructure security games

期刊

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
卷 239, 期 2, 页码 469-478

出版社

ELSEVIER
DOI: 10.1016/j.ejor.2014.04.033

关键词

Uncertainty modeling; Game theory; Matrix game; Bayesian game; Moving targets

资金

  1. Rutgers University TCC/FTA (Transportation Coordinating Council/Federal Transit Administration)

向作者/读者索取更多资源

Infrastructure security against possible attacks involves making decisions under uncertainty. This paper presents game theoretic models of the interaction between an adversary and a first responder in order to study the problem of security within a transportation infrastructure. The risk measure used is based on the consequence of an attack in terms of the number of people affected or the occupancy level of a critical infrastructure, e.g. stations, trains, subway cars, escalators, bridges, etc. The objective of the adversary is to inflict the maximum damage to a transportation network by selecting a set of nodes to attack, while the first responder (emergency management center) allocates resources (emergency personnel or personnel-hours) to the sites of interest in an attempt to find the hidden adversary. This paper considers both static and dynamic, in which the first responder is mobile, games. The unique equilibrium strategy pair is given in closed form for the simple static game. For the dynamic game, the equilibrium for the first responder becomes the best patrol policy within the infrastructure. This model uses partially observable Markov decision processes (POMDPs) in which the payoff functions depend on an exogenous people flow, and thus, are time varying. A numerical example illustrating the algorithm is presented to evaluate an equilibrium strategy pair. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据