4.7 Article

Positron emission tomography imaging of CD105 expression during tumor angiogenesis

出版社

SPRINGER
DOI: 10.1007/s00259-011-1765-5

关键词

CD105/Endoglin; Positron emission tomography (PET); Tumor angiogenesis; (64)Cu; RadioimmunoPET; TRC105

资金

  1. Wisconsin Partnership Program
  2. University of Wisconsin Carbone Cancer Center
  3. NCRR [1UL1RR025011]
  4. Susan G. Komen Postdoctoral Fellowship
  5. DOD

向作者/读者索取更多资源

Purpose Overexpression of CD105 (endoglin) correlates with poor prognosis in many solid tumor types. Tumor microvessel density (MVD) assessed by CD105 staining is the current gold standard for evaluating tumor angiogenesis in the clinic. The goal of this study was to develop a positron emission tomography (PET) tracer for imaging CD105 expression. Methods TRC105, a chimeric anti-CD105 monoclonal antibody, was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with (64)Cu. FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and DOTA-TRC105. PET imaging, biodistribution, blocking, and ex vivo histology studies were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of (64)Cu-DOTA-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. Results FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and DOTA-TRC105, which was further validated by fluorescence microscopy. (64)Cu labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the 4T1 tumor uptake of the tracer was 8.0 +/- 0.5, 10.4 +/- 2.8, and 9.7 +/- 1.8% ID/g at 4, 24, and 48 h post-injection, respectively (n=3), higher than most organs at late time points which provided excellent tumor contrast. Biodistribution data as measured by gamma counting were consistent with the PET findings. Blocking experiments, control studies with (64)Cu-DOTA-cetuximab, as well as ex vivo histology all confirmed the in vivo target specificity of (64)Cu-DOTA-TRC105. Conclusion This is the first successful PET imaging study of CD105 expression. Fast, prominent, persistent, and CD105-specific uptake of the tracer in the 4T1 tumor was observed. Further studies are warranted and currently underway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据