4.5 Article

Modulation of proprioceptive feedback during functional electrical stimulation: an fMRI study

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 37, 期 11, 页码 1766-1778

出版社

WILEY
DOI: 10.1111/ejn.12178

关键词

functional magnetic resonance Imaging; motor control; motor system; sensorimotor integration; somatosensory system

资金

  1. Danish Medical Research Council [FSS 271-07-0092, FSS 271-08-0750]
  2. Axelgaard Manufacturing Co. Ltd
  3. Lundbeck Foundation [R32-2008-2858] Funding Source: researchfish

向作者/读者索取更多资源

Functional electrical stimulation (FES) is sometimes used as a therapeutic modality in motor rehabilitation to augment voluntary motor drive to effect movement that would otherwise not be possible through voluntary activation alone. Effective motor rehabilitation should require that the central nervous system integrate efferent commands and appropriate afferent information to update the internal models of acquired skills. Here, we investigate whether FES-evoked (FES-ev) and FES-assisted (FES-as) movement are associated with the normal integration of motor commands and sensory feedback in a group of healthy participants during functional magnetic resonance imaging (fMRI). Sensory feedback was removed with a peripheral ischaemic nerve block while the participants performed voluntary (VOL), FES-ev or FES-as movement during fMRI. Before the peripheral nerve block, secondary somatosensory area (S2) activation was greater for the FES-ev and FES-as conditions than for the VOL condition. During the ischaemic nerve block, S2 activation was reduced for the FES-ev condition but not for FES-as and VOL conditions. The nerve block also reduced activation during FES in the primary somatosensory cortex and other motor areas including primary motor cortex, dorsal premotor cortex and supplementary motor area. In contrast, superior parietal lobule (area 7A) and precuneus activation was reduced as a consequence of the ischaemic nerve block in the VOL condition. These data suggest FES-related S2 activation is mainly a sensory phenomenon and does not reflect integration of sensory signals with motor commands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据