4.5 Article

Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 38, 期 2, 页码 2280-2289

出版社

WILEY
DOI: 10.1111/ejn.12222

关键词

locomotion; morpholino; regeneration; spinal cord injury; syntenin-a; zebrafish

资金

  1. Li Ka Shing Foundation [LD030601]
  2. Shantou University Postdoctoral Science Initial Foundation [LD030601]
  3. Chinese Postdoctoral Science Foundation [413449]

向作者/读者索取更多资源

In contrast to mammals, adult zebrafish recover locomotor function after spinal cord injury, in part due to the capacity of the central nervous system to repair severed connections. To identify molecular cues that underlie regeneration, we conducted mRNA expression profiling and found that syntenin-a expression is upregulated in the adult zebrafish spinal cord caudal to the lesion site after injury. Syntenin is a scaffolding protein involved in mammalian cell adhesion and movement, axonal outgrowth, establishment of cell polarity, and protein trafficking. It could thus be expected to be involved in supporting regeneration in fish. Syntenin-a mRNA and protein are expressed in neurons, glia and newly generated neural cells, and upregulated caudal to the lesion site on days 6 and 11 following spinal cord injury. Treatment of spinal cord-injured fish with two different antisense morpholinos to knock down syntenin-a expression resulted in significant inhibition of locomotor recovery at 5 and 6weeks after injury, when compared to control morpholino-treated fish. Knock-down of syntenin-a reduced regrowth of descending axons from brainstem neurons into the spinal cord caudal to the lesion site. These observations indicate that syntenin-a is involved in regeneration after traumatic insult to the central nervous system of adult zebrafish, potentially leading to novel insights into the cellular and molecular mechanisms that require activation in the regeneration-deficient mammalian central nervous system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据