4.5 Article

Synaptic activation of mGluR1 generates persistent depression of a fast after-depolarizing potential in CA3 pyramidal neurons

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 33, 期 5, 页码 879-889

出版社

WILEY
DOI: 10.1111/j.1460-9568.2010.07565.x

关键词

burst; excitability; glutamate receptor; hippocampus; plasticity

资金

  1. Pfizer
  2. Medical Research Council

向作者/读者索取更多资源

Burst firing is an important property of hippocampal pyramidal neurons. Group I metabotropic glutamate receptors (mGluRs) produce a multitude of effects on both the synaptic and intrinsic properties of neurons. We investigated whether brief activation of these receptors results in persistent modifications to the intrinsic excitability of rat hippocampal CA3 pyramidal cells (CA3-PCs). In whole-cell current-clamp recordings, current stimuli consisting of filtered, pseudo-random noise produced action potential firing with a mean frequency of similar to 1.5-2 Hz. Analysis of spike intervals revealed that this firing included a substantial component (similar to 20%) of high-frequency (similar to 100 Hz) bursting activity. Activation of group I mGluRs with (S)-3,5-dihydroxyphenylglycine [(S)-DHPG] selectively eliminated the high-frequency bursts, an effect that persisted > 30 min after (S)-DHPG washout. The fast after-depolarizing potential (ADP) of CA3-PCs is known to be important for generating high-frequency action potential bursting. This ADP was persistently depressed following a short application of (S)-DHPG. This effect was blocked by the mGluR1 antagonist, (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385). In contrast, the depression was resistant to the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid (GABA)(A) antagonists. Unlike other manipulations that generate persistent depression of the ADP in CA3-PCs, DHPG-mediated ADP depression was insensitive to the Kv7 channel inhibitor 10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) and strong intracellular Ca2+ buffering by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Synaptic activation of mGluRs in the associational-commissural pathway also resulted in persistent depression of the ADP in postsynaptic CA3-PCs, which was blocked by LY367385. These data represent the first evidence that synaptic activation of mGluR1 can modulate the intrinsic excitability properties of hippocampal neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据