4.5 Article

Evaluating the neural basis of temporal order memoryfor visual stimuli in the rat

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 33, 期 4, 页码 705-716

出版社

WILEY
DOI: 10.1111/j.1460-9568.2010.07555.x

关键词

cholinergic muscarinic receptors; glutamate receptors; medial pre-frontal cortex; perirhinal cortex; recognition memory

资金

  1. Biotechnology and Biological Sciences Research Council
  2. BBSRC [BB/E010407/1] Funding Source: UKRI
  3. Biotechnology and Biological Sciences Research Council [BB/E010407/1] Funding Source: researchfish

向作者/读者索取更多资源

Temporal order memory (memory for stimulus order) is crucial for discrimination between familiar objects and depends upon a neural circuit involving the perirhinal cortex (PRH) and medial pre-frontal cortex. This study examined the role of glutamatergic and cholinergic neurotransmission in the encoding or retrieval of temporal order memory, using a task requiring the animals to discriminate between two familiar objects presented at different intervals. 6-Cyano-7-nitroquinoxaline (CNQX) (AMPA/kainate receptor antagonist), scopolamine (muscarinic receptor antagonist) or 2-amino-5-phosphonopentanoic acid (AP5) (N-methyl-D-aspartate receptor antagonist) was administered before sample phase 2 (to be active during encoding) or before test (to be active during retrieval). Unilateral CNQX administration into the PRH and pre-limbic/infra-limbic cortices (PL/IL) in opposite hemispheres, i.e. to disrupt neurotransmission within the circuit, impaired encoding and retrieval. Administration of scopolamine or AP5 in the PRH-PL/IL circuit impaired encoding. Drug effects in each brain region were then investigated separately. Intra-PRH CNQX, scopolamine or AP5 disrupted encoding, such that the animals explored the recent object significantly more than the old object. In contrast, intra-PL/IL CNQX, scopolamine or AP5 impaired memory performance such that the animals spent an equal amount of time exploring the objects. CNQX but not AP5 or scopolamine impaired retrieval. Furthermore, CNQX impaired novel object preference when infused into the PRH but not PL/IL following a 3 h delay. Thus, encoding of temporal order memory is mediated by plastic processes involving N-methyl-D-aspartate and muscarinic receptors within the PRH-PL/IL circuit, but these two regions make qualitatively different cognitive contributions to the formation of this memory process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据