4.5 Article

Evaluating dopaminergic system contributions to cued pattern switching during bimanual coordination

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 34, 期 4, 页码 632-640

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1460-9568.2011.07773.x

关键词

basal ganglia; dopamine; inter-limb coordination; Parkinson's disease; sequential movements

资金

  1. National Science and Engineering Research Council (NSERC)
  2. North American Society for Psychology of Sport and Physical Activity (NASPSPA)

向作者/读者索取更多资源

Switching between different coordinated movements has been shown to be slow, with delayed responses and even freezing deficits in individuals with Parkinson's disease (PD). While it is well accepted that the dopaminergic system responds to dopamine replacement to ameliorate overall slowness (bradykinesia) and other motor symptoms of PD, it is unknown whether the dopaminergic system can influence overall coordination between limbs and if this may be impacted by the availability of sensory feedback. In the current study, PD and healthy age-matched control participants performed a rhythmic coordination task that required a cued voluntary switch between movement patterns (in-phase and anti-phase). PD participants performed the task first after overnight withdrawal ('off'), and subsequently after administration ('on') of dopamine replacement. Coordinated movements were performed while paced by an auditory metronome in two sensory conditions: 'no vision' or 'normal vision'. Measures of voluntary switch time and delayed responses revealed that PD 'off' required significantly more time than healthy participants to switch between movement patterns. Interestingly, PD 'off' demonstrated disrupted coordination, as revealed by mean (accuracy) and standard deviation (stability) of absolute error of relative phase. Dopamine replacement improved the time needed to switch and amount of delayed responses in PD participants, but had no influence on coordination itself. It is concluded that although modulation of the dopaminergic system improves the slowness during switching, coordination deficits may be the result of secondary impairments (possibly attention-related) that cannot be improved with dopamine replacement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据