4.5 Article

Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 31, 期 7, 页码 1196-1207

出版社

WILEY
DOI: 10.1111/j.1460-9568.2010.07165.x

关键词

asynchronous; cannabinoid receptors; cholecystokinin; interneurons; tonic inhibition

资金

  1. Medical Research Council (UK)
  2. New Investigators Award
  3. Medical Research Council [G0800498, G0501263] Funding Source: researchfish
  4. MRC [G0501263, G0800498] Funding Source: UKRI

向作者/读者索取更多资源

The influence of local circuit interneurons is thought to play an important role in adjusting synaptic strength via endogenous cannabinoid type 1 (CB1) receptors. Using paired whole-cell recordings, combined with double immunofluorescence and biocytin labelling in acute slices of rat CA1 at postnatal day 18-23, we investigated the properties of Cholecystokinin (CCK)-positive stratum radiatum local circuit interneuron connections that utilised CB1 receptors. Three types of synaptic connections were studied, lacunosum-moleculare-radiatum perforant path-associated (LM-R PPA) to Shaffer collateral-associated (SCA) interneurons, SCA-SCA interneurons and SCA-pyramidal cells. These three synapses were differentially under tonic reduction of inhibition that was blocked by the CB1 receptor inverse agonist AM-251 (10 mu m), which enhanced IPSPs. The strength of tonic reduction of inhibition was correlated with asynchronous release which was apparent at connections among interneurons. AM-251 increased the ratio of synchronous to asynchronous release (synchronicity ratio), while the CB receptor agonist anandamide (14 mu m) decreased the synchronicity ratio. Fast and slow calcium chelators (BAPTA-AM and EGTA-AM) also increased the synchronicity ratio, accelerated inhibitory time courses and reduced IPSP amplitudes. These data suggest that CB1 receptors at connections among interneuron synapses play a role in tonic suppression of inhibition and govern the asynchronous release of GABA, modulating the time windows of inhibition. Effects of calcium chelators suggest that asynchronous release is a result of a long-lasting presynaptic calcium transients and/or a large distance between calcium source and sensor of exocytosis. These properties of specialised inhibitory neurons may have important modulatory roles in controlling spike timing among local circuit interneurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据