4.5 Article

Functional deprivation promotes amyloid plaque pathogenesis in Tg2576 mouse olfactory bulb and piriform cortex

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 31, 期 4, 页码 710-721

出版社

WILEY
DOI: 10.1111/j.1460-9568.2010.07103.x

关键词

amyloidogenesis; axonal pathology; cerebral hypometabolism; neuroplasticity; secretase

资金

  1. Illinois Department of Public Health
  2. National Institute of Health [1R21NS056371]
  3. National Institute on Aging
  4. Hunan Natural Science Foundation [07JJ5026]
  5. Center for Alzheimer's Disease and Related Disorders

向作者/读者索取更多资源

Cerebral hypometabolism and amyloid accumulation are principal neuropathological manifestations of Alzheimer's disease (AD). Whether and how brain/neuronal activity might modulate certain pathological processes of AD are interesting topics of recent clinical and basic research in the field, and may be of potential medical relevance in regard to both the disease etiology and intervention. Using the Tg2576 transgenic mouse model of AD, this study characterized a promotive effect of neuronal hypoactivity associated with functional deprivation on amyloid plaque pathogenesis in the olfactory pathway. Unilateral naris-occlusion caused beta-secretase-1 (BACE1) elevation in neuronal terminals in the deprived relative to the non-deprived bulb and piriform cortex in young adult mice. In parallel with the overall age-related plaque development in the forebrain, locally increased BACE1 immunoreactivity co-occurred with amyloid deposition first in the piriform cortex then within the bulb, more prominent on the deprived relative to the non-deprived side. Biochemical analyses confirmed elevated BACE1 protein levels, enzymatic activity and products in the deprived relative to non-deprived bulbs. Plaque-associated BACE1 immunoreactivity in the bulb and piriform cortex was localized preferentially to swollen/sprouting glutamatergic axonal terminals, with A beta immunoreactivity occurring inside as well as around these terminals. Together, these findings suggest that functional deprivation or neuronal hypoactivity facilitates amyloid plaque formation in the forebrain in a transgenic model of AD, which operates synergistically with age effect. The data also implicate an intrinsic association of amyloid accumulation and plaque formation with progressive axonal pathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据