4.5 Article

Reaction Mechanism of Water Oxidation Catalyzed by Iron Tetraamido Macrocyclic Ligand Complexes - A DFT Study

期刊

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
卷 -, 期 4, 页码 728-741

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.201300710

关键词

Water oxidation; Reaction mechanisms; Density functional calculations; Iron

向作者/读者索取更多资源

Density functional calculations are used to elucidate the reaction mechanism of water oxidation catalyzed by iron tetra-amido macrocyclic ligand (TAML) complexes. The oxidation of the starting TAML-Fe3+-OH2 complex by removing three electrons and two protons leads to the formation of a key intermediate, TAML-Fe5+=O, which can undergo nucleophilic attack by either a water molecule or a nitrate ion. Both pathways involve attack on the oxo group and lead to the production of O-2. The water attack is more favoured and has a total barrier of 15.4 kcal/mol. The alternative nitrate attack pathway has a barrier of 19.5 kcal/mol. Nitrate functions as a cocatalyst by first donating an oxygen atom to the oxo group to form O-2 and a nitrite ion, which can then be reoxidized to regenerate a nitrate ion. Three possible competing pathways result in ligand modification, namely, water and nitrate attack on the ligand, as well as ligand amide oxidation. The water attack on the ligand has a low barrier of only 10.9 kcal/mol and leads to the opening of the benzene ring, which explains the observation of fast catalyst degradation. The lack of activity or lower activity of other catalysts with different substituents is also rationalized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据