4.5 Article

Microwave-Hydrothermal Synthesis of Nanostructured Zinc-Copper Gallates

期刊

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
卷 -, 期 13, 页码 2036-2043

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.200901169

关键词

Zinc; Copper; Gallium; Microwave chemistry; Nanoparticles; Spinel phases; Hydrothermal synthesis

资金

  1. Swiss National Science Foundation (SNSF) [PP002-114711/1]
  2. University of Zurich
  3. Graduate School of Chemical and Molecular Sciences Zurich (CMSZH)
  4. Electron Microscopy Center, ETH Zurich (EMEZ)
  5. European Community [RII3-CT-2004-506008]

向作者/读者索取更多资源

Zinc gallate is an important semiconductor for manifold applications, e.g. in field emission displays or as a photocatalyst for water splitting. In addition to these interesting properties, zinc gallate is also an excellent matrix material that can be furthermore tuned through the incorporation of guest cations to form functional solid solutions with new optical and catalytic properties. We present a convenient microwave-hydrothermal synthesis of nanostructured Cu2+-substituted ZnGa2O4 spinels and their characterization with respect to morphology, chemical composition, structural, magnetic and optical properties. The microwave-based approach offers a straightforward and one-step access to nanostructured zinc gallate-based materials and related compounds as a new preparative advantage. As the properties of mixed spinel-based solid solutions strongly depend on the distribution of the guest ions between the different lattice sites, we have employed a wide range of analytical techniques to investigate the physico-chemical properties of the obtained copper-containing zinc gallate materials. The element specific EX-AFS analysis at the Cu K- and Zn K-edge shows a difference in the coordination environments with Zn mostly situated on the tetrahedral sites of the spinel lattice whereas Cu is located on the octahedral sites of the nanostructured ZnGa2O4:Cu2+ materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据