4.5 Article

MOG35-55 i.v suppresses experimental autoimmune encephalomyelitis partially through modulation of Th17 and JAK/STAT pathways

期刊

EUROPEAN JOURNAL OF IMMUNOLOGY
卷 39, 期 3, 页码 789-799

出版社

WILEY-BLACKWELL
DOI: 10.1002/eji.200838427

关键词

Cytokine; EAE/MS; Intracellular signaling; MOG i.v.

资金

  1. National Institutes of Health
  2. National Multiple Sclerosis Society
  3. Groff Foundation

向作者/读者索取更多资源

Intravenous (i.v.) administration of encephalitogenic peptide can effectively prevent experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis; however, the underlying cellular and molecular mechanisms are not fully understood, In this study, we induced i.v. tolerance to EAE by administration of MOG(35-55) peptide and determined the effect of this approach on intracellular signaling pathways of the IL-23/IL-17 system, which is essential for the pathogenesis of MS/EAE. In tolerized mice, phosphorylation of JAK/STAT-1, -4, ERK1/2 and NF-kappa Bp65 were significantly reduced in splenocytes and the central nervous system. MOG i.v. treatment led to significantly lower production of IL-17, and administration of exogenous IL-17 slightly broke immune tolerance, which was associated with reduced activation of STAT4 and NF-kappa B. Suppressed phosphorylation of these pathway molecules was primarily evident in CD11b(+) and small numbers of CD4(+), CD8(+) and CD11c(+) cells. More importantly, adoptive transfer of CD11b(+) splenocytes of tolerized mice effectively delayed onset and reduced clinical severity of actively induced EAE. This study correlates MOG i.v. tolerance with modulation of Jak/STAT signaling pathways and investigates novel therapeutic avenues for the treatment of EAE/MS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据