4.5 Article

Ligand stabilization of CXCR4/δ-opioid receptor heterodimers reveals a mechanism for immune response regulation

期刊

EUROPEAN JOURNAL OF IMMUNOLOGY
卷 38, 期 2, 页码 537-549

出版社

WILEY
DOI: 10.1002/eji.200737630

关键词

chemokine receptor; GPCR oligomerization; opioid receptors

向作者/读者索取更多资源

The CXCR4 chemokine receptor and the delta opioid receptor (DOR) are pertussis toxin-sensitive G protein-coupled receptors (GPCR). Both are widely distributed in brain tissues and immune cells, and have key roles in inflammation processes and in pain sensation on proximal nerve endings. We show that in immune cells expressing CXCR4 and DOR, simultaneous addition of their ligands CXCL12 and [D-Pen2, D-Pen5]enkephalin does not trigger receptor function. This treatment does not affect ligand binding or receptor expression, nor does it promote heterologous desensitization. Our data indicate that CXCR4 and DOR form heterodimeric complexes that are dynamically regulated by the ligands. This is compatible with a model in which GPCR oligomerization leads to suppression of signaling, promoting a dominant negative effect. Knockdown of CXCR4 and DOR signaling by heterodimerization might have repercussions on physiological and pathological processes such as inflammation, pain sensation and HIV-1 infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据