4.5 Article

Hepatocyte autophagy is linked to C/EBP-homologous protein, Bcl2-interacting mediator of cell death, and BH3-interacting domain death agonist gene expression

期刊

JOURNAL OF SURGICAL RESEARCH
卷 195, 期 2, 页码 588-595

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2015.01.039

关键词

Autophagy; Endoplasmic reticulum stress; BIM; BID; CHOP; Hepatocyte

类别

资金

  1. National Institutes of Health [L30 DK082350, R21 DK090661]

向作者/读者索取更多资源

Background: Endoplasmic reticulum (ER) stress and autophagy each play important roles in hepatocyte cell injury. We hypothesized that gene expression of C/EBP-homologous protein (CHOP) and the BH3 proteins Bcl2-interacting mediator of cell death (BIM) and BH3-interacting domain death agonist (BID) are involved in a complex interplay that regulates ER stress-induced autophagy and cell death. Materials and methods: Hepatocytes were cultured from lean Zucker rats. Confluent hepato-cytes were incubated with single or combined small interfering RNA for CHOP, BIM, and/or BID for 24 h providing gene inhibition. Incubation with tunicamycin (TM) for another 24 h stimulated ER stress. Quantitative real-time polymerase chain reaction determined the expression levels of CHOP, BIM, and BID. Immunostaining with microtubule-associated protein 1 light chain 3 measured autophagy activity. Trypan blue exclusion determined the cell viability. Results: TM treatment increased the messenger RNA levels of CHOP and BIM but decreased the messenger RNA levels of BID. TM increased autophagy and decreased cell viability. Individual inhibition of CHOP, BIM, or BID protected against autophagy and cell death. However, simultaneous treatment with any combination of CHOP, BIM, and BID small interfering RNAs reduced autophagy activity but increased cell death independent of ER stress induction. Conclusions: Autophagy in hepatocytes results from acute ER stress and involves interplay, at the gene expression level, of CHOP, BIM, and BID. Inhibition of any one of these individual genes during acute ER stress is protective against cell death. Conversely, inhibition of any two of the three genes results in increased nonautophagic cell death independent of ER stress induction. This study suggests interplay between CHOP, BIM, and BID expression that can be leveraged for protection against ER stress-related cell death. However, disruption of the CHOP/BH3 gene expression homeostasis is detrimental to cell survival independent of other cellular stress. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据