4.5 Article

Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis

期刊

EUROPEAN JOURNAL OF IMMUNOLOGY
卷 38, 期 2, 页码 565-575

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/eji.200737187

关键词

antigen-presenting cells; autoimmunity; cytokines; innate immunity; T helper cells

向作者/读者索取更多资源

Innate immune mechanisms essential for priming encephalitogenic T cells in autoimmune neuroinflammation are poorly understood. Experimental autoimmune encephalomyelitis (EAE) is a IL-17-producing Th (Th17) cell-mediated autoimmune disease and an animal model of multiple sclerosis. To investigate how upstream TLR signals influence autoimmune T cell responses, we studied the role of individual TLR and MyD88, the common TLR adaptor molecule, in the initiation of innate and adaptive immune responses in EAE. Wild type (WT) C57BL/6, TLR-deficient and MyD88-deficient mice were immunized with myelin oligodendrocyte glycoprotein (MOG) in CFA. MyD88(-/-) mice were completely EAE resistant. Purified splenic myeloid DC (mDC) from MyD88(-/-) mice expressed much less IL-6 and IL-23, and serum and T cell IL-17 were absent. TLR4(-/-) and TLR9(-/-) mice surprisingly exhibited more severe EAE symptoms than WT mice. IL-6 and IL-23 expression by mDC and Th17 responses were higher in TLR4(-/-) mice, suggesting a regulatory role of TLR4 in priming Th17 cells. IL-6 expression by splenocytes was higher in TLR9(-/-) mice. Our data suggest that MyD88 mediates the induction of mDC IL-6 and IL-23 responses after MOG immunization, which in turn drives IL-17-producing encephalitogenic Th17 cell activation. Importantly, we demonstrate that TLR4 and TLR9 regulate disease severity in MOG-induced EAE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据