4.5 Article

An unbalanced translocation unmasks a recessive mutation in the follicle-stimulating hormone receptor (FSHR) gene and causes FSH resistance

期刊

EUROPEAN JOURNAL OF HUMAN GENETICS
卷 18, 期 6, 页码 656-661

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ejhg.2009.244

关键词

FSH receptor deficiency; FSHR mutation; chromosome 2p16.3; translocation; hypergonadotropic hypogonadism

向作者/读者索取更多资源

Follicle-stimulating hormone (FSH) mediated by its receptor (FSHR) is pivotal for normal gametogenesis. Inactivating FSHR mutations are known to cause hypergonadotropic hypogonadism with disturbed follicular maturation in females. So far, only very few recessive point mutations have been described. We report on a 17-year-old female with primary amenorrhea, hypergonadotropic hypogonadism and disturbed folliculogenesis. Chromosome analysis detected a seemingly balanced translocation 46,XX,t(2;8)(p16.3or21;p23.1) mat. FSHR sequence analysis revealed a novel non-synonymous point mutation in exon 10 (c.1760C>A, p.Pro587His), but no wild-type allele. The mutation was also found in the father, but not in the mother. Furthermore, molecular-cytogenetic analyses of the breakpoint region on chromosome 2 showed the translocation to be unbalanced, containing a deletion with one breakpoint within the FSHR gene. The deletion size was narrowed down by array analysis to approximately 163 kb, involving exons 9 and 10 of the FSHR gene. Functional studies of the mutation revealed the complete lack of signal transduction presumably caused by a changed conformational structure of transmembrane helix 6. To our knowledge, this is the first description of a compound heterozygosity of an inactivating FSHR point mutation unmasked by a partial deletion. This coincidence of two rare changes caused clinical signs consistent with FSH resistance. European Journal of Human Genetics (2010) 18, 656-661; doi: 10.1038/ejhg.2009.244; published online 20 January 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据