4.5 Article

Identification of non-recurrent submicroscopic genome imbalances: the advantage of genome-wide microarrays over targeted approaches

期刊

EUROPEAN JOURNAL OF HUMAN GENETICS
卷 16, 期 3, 页码 395-400

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.ejhg.5201975

关键词

array CGH; mental retardation; microarray; microdeletion; microduplication; MLPA

向作者/读者索取更多资源

Genome-wide analysis of DNA copy-number changes using microarray-based technologies has enabled the detection of de novo cryptic chromosome imbalances in approximately 10% of individuals with mental retardation. So far, the majority of these submicroscopic microdeletions/duplications appear to be unique, hampering clinical interpretation and genetic counselling. We hypothesised that the genomic regions involved in these de novo submicroscopic aberrations would be candidates for recurrent copy-number changes in individuals with mental retardation. To test this hypothesis, we used multiplex ligation-dependent probe amplification (MLPA) to screen for copy number changes at eight genomic candidate regions in a European cohort of 710 individuals with idiopathic mental retardation. By doing so, we failed to detect additional submicroscopic rearrangements, indicating that the anomalies tested are nonrecurrent in this cohort of patients. The break points flanking the candidate regions did not contain low copy repeats and/or sequence similarities, thus providing an explanation for its non-recurrent nature. On the basis of these data, we propose that the use of genome-wide microarrays is indicated when testing for copy-number changes in individuals with idiopathic mental retardation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据